2,216 research outputs found

    Stretching the limits of dynamic range, shielding effectiveness, and multiband frequency response

    Get PDF
    In this dissertation, an RF MEMS variable capacitor suitable for applications requiring ultrawide capacitive tuning ranges is reported. The device uses an electrostatically tunable liquid dielectric interface to continuously vary the capacitance without the use of any moving parts. As compared to existing MEMS varactors in literature, this device has an extremely simple design that can be implemented using simple fabrication methods that do not necessitate the use of clean room equipment. In addition, this varactor is particularly suited for incorporating a wide range of liquid dielectric materials for specific tuning ratio requirements. Additionally, the shielding effectiveness performance of graphene-doped ABS thin films is investigated. The use of graphene as a replacement for metal fillers in composite EMI shielding materials is quickly becoming a widely-investigated field in the electromagnetic compatibility community. By replacing conventional metal-based shielding methods with graphene-doped polymers, low-weight, field-use temporary shielding enclosures can be implemented that do not suffer from mechanical unreliability and corrosion/oxidation like a traditional metal enclosure. While the performance of composite EMI shielding materials has not yet surpassed metals, the advantages of polymer-based shielding methods could find usage in a variety of applications. Finally, mutliband pre-fractal antennas fabricated via 3D printing are reported. These devices are the first to incorporate the advantages of 3D printing (rapid prototyping, fabrication of complex geometries otherwise unobtainable) with the advantages of self-similar antennas (increased gain and multiband performance) in a single device. The Sierpinski tetrahedron-based antenna design was both computationally modeled and physically realized to illustrate its potential as a solution to enable true multiband communication platforms

    Transparent Polymer Opal Thin Films with Intense UV Structural Color

    Get PDF
    We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of ‘scattering cones’, which showed strong reflectivity in the 275–315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties

    Transparent Polymer Opal Thin Films with Intense UV Structural Color

    Get PDF
    We report on shear-ordered polymer photonic crystals demonstrating intense structural color with a photonic bandgap at 270 nm. Our work examines this UV structural color, originating from a low refractive index contrast polymer composite system as a function of the viewing angle. We report extensive characterization of the angle-dependent nature of this color in the form of ‘scattering cones’, which showed strong reflectivity in the 275–315 nm range. The viewing range of the scattering was fully quantified for a number of planes and angles, and we additionally discuss the unique spectral anisotropy observed in these structures. Such films could serve as low-cost UV reflection coatings with applications in photovoltaics due to the fact of their non-photobleaching and robust mechanical behavior in addition to their favorable optical properties

    In Situ Probes of the First Galaxies and Reionization: Gamma-ray Bursts

    Get PDF
    The first structures in the Universe formed at z>7, at higher redshift than all currently known galaxies. Since GRBs are brighter than other cosmological sources at high redshift and exhibit simple power-law afterglow spectra that is ideal for absorption studies, they serve as powerful tools for studying the early universe. New facilities planned for the coming decade will be able to obtain a large sample of high-redshift GRBs. Such a sample would constrain the nature of the first stars, galaxies, and the reionization history of the Universe.Comment: 8 pages, 3 figures, science white paper submitted to the US Astro2010 Decadal Surve

    GRB Polarimetry with POET

    Get PDF
    POET (Polarimeters for Energetic Transients) represents a concept for a Small Explorer (SMEX) satellite mission, whose principal scientific goal is to understand the structure of GRB sources through sensitive X‐ray and γ‐ray polarization measurements. The payload consists of two wide field‐of‐view (FoV) instruments: a Low Energy Polarimeter (LEP) capable of polarization measurements in the energy range from 2–15 keV and a high energy polarimeter (Gamma‐Ray Polarimeter Experiment or GRAPE) that would measure polarization in the 60–500 keV energy range. The POET spacecraft provides a zenith‐pointed platform for maximizing the exposure to deep space. Spacecraft rotation provides a means of effectively dealing with any residual systematic effects in the polarization response. POET provides sufficient sensitivity and sky coverage to measure statistically significant polarization (for polarization levels in excess of 20%) for ∼80 GRBs in a two‐year mission. High energy polarization data would also be obtained for SGRs, solar flares, pulsars and other sources of astronomical interest

    The efficiency of star formation in clustered and distributed regions

    Full text link
    We investigate the formation of both clustered and distributed populations of young stars in a single molecular cloud. We present a numerical simulation of a 10,000 solar mass elongated, turbulent, molecular cloud and the formation of over 2500 stars. The stars form both in stellar clusters and in a distributed mode which is determined by the local gravitational binding of the cloud. A density gradient along the major axis of the cloud produces bound regions that form stellar clusters and unbound regions that form a more distributed population. The initial mass function also depends on the local gravitational binding of the cloud with bound regions forming full IMFs whereas in the unbound, distributed regions the stellar masses cluster around the local Jeans mass and lack both the high-mass and the low-mass stars. The overall efficiency of star formation is ~ 15 % in the cloud when the calculation is terminated, but varies from less than 1 % in the the regions of distributed star formation to ~ 40 % in regions containing large stellar clusters. Considering that large scale surveys are likely to catch clouds at all evolutionary stages, estimates of the (time-averaged) star formation efficiency for the giant molecular cloud reported here is only ~ 4 %. This would lead to the erroneous conclusion of 'slow' star formation when in fact it is occurring on a dynamical timescale.Comment: 9 pages, 8 figures, MNRAS in pres

    Photometric Survey of the Irregular Satellites

    Get PDF
    We present BVRI colors of 13 Jovian and 8 Saturnian irregular satellites obtained with the 2.56m Nordic Optical Telescope on La Palma, the 6.5m Magellan Baade Telescope on La Campanas, and the 6m MMT on Mt. Hopkins. The observations were performed between December 2001 to March 2002. Nearly all of the known irregular satellites can be divided into two distinct classes based on their colors. One, the grey color class, has the similar colors to the C-type asteroid, and the other, the light red color class, has colors similar to P/D-type asteroids. We also find at least one object, the Jovian irregular J XXIII Kalyke, that has colors similar to the red colored Centaurs/TNOs, although its classification is unsecure. We also find that there is a correlation between the physical properties and dynamical properties of the irregular satellites. Most of the dynamical clusters have homogeneous colors, which points to single homogeneous progenitors being cratered or fragmented as the source of each individual cluster. The heterogeneous colored clusters are most easily explained by assuming that there are several dynamical clusters in the area, rather than just one.Comment: Submitted to Icarus, 43 pages including 5 figure

    Differential cargo mobilisation within Weibel-Palade bodies after transient fusion with the plasma membrane.

    Get PDF
    Inflammatory chemokines can be selectively released from Weibel-Palade bodies (WPBs) during kiss-and-run exocytosis. Such selectivity may arise from molecular size filtering by the fusion pore, however differential intra-WPB cargo re-mobilisation following fusion-induced structural changes within the WPB may also contribute to this process. To determine whether WPB cargo molecules are differentially re-mobilised, we applied FRAP to residual post-fusion WPB structures formed after transient exocytosis in which some or all of the fluorescent cargo was retained. Transient fusion resulted in WPB collapse from a rod to a spheroid shape accompanied by substantial swelling (>2 times by surface area) and membrane mixing between the WPB and plasma membranes. Post-fusion WPBs supported cumulative WPB exocytosis. To quantify diffusion inside rounded organelles we developed a method of FRAP analysis based on image moments. FRAP analysis showed that von Willebrand factor-EGFP (VWF-EGFP) and the VWF-propolypeptide-EGFP (Pro-EGFP) were immobile in post-fusion WPBs. Because Eotaxin-3-EGFP and ssEGFP (small soluble cargo proteins) were largely depleted from post-fusion WPBs, we studied these molecules in cells preincubated in the weak base NH4Cl which caused WPB alkalinisation and rounding similar to that produced by plasma membrane fusion. In these cells we found a dramatic increase in mobilities of Eotaxin-3-EGFP and ssEGFP that exceeded the resolution of our method (∼ 2.4 µm2/s mean). In contrast, the membrane mobilities of EGFP-CD63 and EGFP-Rab27A in post-fusion WPBs were unchanged, while P-selectin-EGFP acquired mobility. Our data suggest that selective re-mobilisation of chemokines during transient fusion contributes to selective chemokine secretion during transient WPB exocytosis. Selective secretion provides a mechanism to regulate intravascular inflammatory processes with reduced risk of thrombosis
    corecore